lunes, 25 de abril de 2016

CLASE 22 ABRIL

Hoy en clase hemos terminado el tema de las funciones con una serie de ejercicios, vamos a comenzar recordando el teorema de limite de la composición de funciones:

Teorema del límite de la composición de funciones:
Si       y   
                    
Ej:
   es una composición de las funciones f=sen x y .
El límite de esta función va a ser el límite de g(x) que en este caso es 0.

Ejercicios de comparación de funciones;

  • Potenciales*
  • Exponenciales**
  • Logarítmicas
Todos tienen infinitos en +
*No todas las potenciales tienen infinitos en +
**En + tienen un infinitísimo.

Comparación de 2 funciones potenciales   y  

Comparación de 2 funciones exponenciales    y   




TEMA 13 DERIVADAS
Para hablar de derivadas necesitamos conocer los conceptos de límite (que ya conocemos) y de tasa de variación media
TVM(f,[Xo,X1])-->TVM (f,[Xo,Xo+h])
h=X1-Xo, X1=Xo+h

Tasa de variación instantánea (TVI) de (f,Xo)



Si existe este valor f '(Xo) en R se dice que f es derivable en Xo. Con esto podemos decir que una función es derivable cuando es derivable en todos los puntos de su Dom.

PROPOSICIÓN:
f derivable en Xo si existen las derivadas laterales:


No hay comentarios:

Publicar un comentario